Day 22: Sand
Megathread guidelines
- Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
- You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL
FAQ
- What is this?: Here is a post with a large amount of details: https://programming.dev/post/6637268
- Where do I participate?: https://adventofcode.com/
- Is there a leaderboard for the community?: We have a programming.dev leaderboard with the info on how to join in this post: https://programming.dev/post/6631465
You must log in or register to comment.
Python
10.578 line-seconds.
import collections from aoc23.util import assert_full_match from .solver import Solver def _trace_brick(x0, y0, x1, y1): if x0 == x1: y0, y1 = min(y0, y1), max(y0, y1) for y in range(y0, y1 + 1): yield (x0, y) elif y0 == y1: x0, x1 = min(x0, x1), max(x0, x1) for x in range(x0, x1 + 1): yield (x, y0) else: raise ValueError(f'not a brick: {x0}, {y0}, {x1}, {y1}') class Day22(Solver): can_be_deleted: set[int] support_map: dict[int, list[int]] brick_count: int def __init__(self): super().__init__(22) def presolve(self, input: str): lines = input.splitlines() bricks = [] for line in lines: x0, y0, z0, x1, y1, z1 = assert_full_match(r'(\d+),(\d+),(\d+)~(\d+),(\d+),(\d+)', line).groups() bricks.append(((int(x0), int(y0), int(z0)), (int(x1), int(y1), int(z1)))) self.brick_count = len(bricks) bricks.sort(key=lambda brick: min(brick[0][2], brick[1][2])) self.can_be_deleted = set() topmost_brick_per_position: dict[tuple[int, int], tuple[int, int]] = {} self.support_map = {} for brick_id, ((x0, y0, z0), (x1, y1, z1)) in enumerate(bricks): support_brick_ids = set() support_brick_z = 0 for (x, y) in _trace_brick(x0, y0, x1, y1): potential_support = topmost_brick_per_position.get((x, y)) if not potential_support: continue if potential_support[0] > support_brick_z: support_brick_z = potential_support[0] support_brick_ids = {potential_support[1]} elif potential_support[0] == support_brick_z: support_brick_ids.add(potential_support[1]) self.support_map[brick_id] = list(support_brick_ids) if len(support_brick_ids) == 1: self.can_be_deleted.discard(support_brick_ids.pop()) for (x, y) in _trace_brick(x0, y0, x1, y1): topmost_brick_per_position[(x, y)] = (support_brick_z + 1 + z1 - z0, brick_id) self.can_be_deleted.add(brick_id) def solve_first_star(self) -> int: return len(self.can_be_deleted) def solve_second_star(self) -> int: reverse_support_map = collections.defaultdict(set) for brick_id, support_brick_ids in self.support_map.items(): for support_brick_id in support_brick_ids: reverse_support_map[support_brick_id].add(brick_id) total = 0 for brick_id in range(self.brick_count): all_destroyed_bricks = set() queue = [brick_id] while queue: destroy_brick_id = queue.pop(0) for potential_destroyed_brick in reverse_support_map[destroy_brick_id]: if potential_destroyed_brick in all_destroyed_bricks: continue remaining_supports = set(self.support_map[potential_destroyed_brick]) remaining_supports -= (all_destroyed_bricks | {destroy_brick_id}) if not remaining_supports: queue.append(potential_destroyed_brick) all_destroyed_bricks.add(destroy_brick_id) total += len(all_destroyed_bricks) - 1 return total