Yup. The libraries underneath will still allow nonsense at runtime, though, and it will now be harder to see, so it’s a partial solution as done in standard practice.
An all-TypeScript stack, if you could pull it off, would be the way to go.
Most libraries have TypeScript types these days, either bundled directly with the library (common with newer libraries), or as part of the DefinitelyTyped project.
DefinitelyTyped is the exact kind of thing I’m talking about. You put TypeScript definitions over things, but under the hood it’s still JavaScript and can fail in JavaScript ways.
It can’t fail in javascript ways that require specific sequences of code to be written, if those sequences of code aren’t in the range of output of the Typescript compiler.
If there was an easy way to use rust or something on webassemly and use that instead of JS. I’d be so happy, but I can’t find how to do it without npm.
Doesn’t look like it, unfortunately. But it’s planned. Kotlin can also compile to JavaScript with DOM manipulation. I’ve not tried either scenario, myself.
Rust would probably be the wrong tool here. This is scripting, so pointers like Rust is built around aren’t really meaningful. Kotlin or Python or something are more on the ticket.
Websites have grown beyond mere scripting.
Rust is about more than just nicer pointers, it has a very expressive type system that enables correctness rarely seen outside FP.
You can use WebAssembly today, but you still need some JS interop for a bunch of browser features (like DOM manipulation). Your core logic can be in WebAssembly though. C# has Blazor, and I wouldn’t be surprised if there’s some Rust WebAssembly projects. I seem to recall that there’s a reimplementation of Flash player that’s built in Rust and compiles to WebAssembly.
Yeah, ideally TypeScript would be natively supported. Or maybe just Python, which is sort-of strictly typed, and definitely won’t do “wat”. Alas, it’s not the world we live in, and browsers take JavaScript.
Python supports type hints, but you need to use a type checker like Pyre or Pyright to actually check them. Python itself doesn’t do anything with the type hints.
The libraries underneath will still allow nonsense at runtime
Only if you use a badly written library. Most libraries have types provided by DefinitelyTyped. Those who don’t are (in my experience) so tiny that you probably aren’t using them; or, if you really wanted, can check yourself.
In the end, if you encounter a bug, it’ still 99% of the time not a library’s fault, even if it’s written in plain JS.
Like I said to the other person, those are just types over top of JavaScript that can still fail if/when coercion happens under the hood.
I don’t even know how to search it now, but a specific example came up on here of a time when JavaScript libraries will cause problems, and problems you can’t even see very well if you’re expecting it to act strictly-typed.
Yup. The libraries underneath will still allow nonsense at runtime, though, and it will now be harder to see, so it’s a partial solution as done in standard practice.
An all-TypeScript stack, if you could pull it off, would be the way to go.
Most libraries have TypeScript types these days, either bundled directly with the library (common with newer libraries), or as part of the DefinitelyTyped project.
DefinitelyTyped is the exact kind of thing I’m talking about. You put TypeScript definitions over things, but under the hood it’s still JavaScript and can fail in JavaScript ways.
It can’t fail in javascript ways that require specific sequences of code to be written, if those sequences of code aren’t in the range of output of the Typescript compiler.
So a strictly typed language… I think those already exist.
If there was an easy way to use rust or something on webassemly and use that instead of JS. I’d be so happy, but I can’t find how to do it without npm.
We use this framework at work: https://leptos.dev
It’s in alpha, but there is a Kotlin to wasm compiler in the works.
Does WASM do DOM manipulation nowadays?
Doesn’t look like it, unfortunately. But it’s planned. Kotlin can also compile to JavaScript with DOM manipulation. I’ve not tried either scenario, myself.
Kotlin -> JavaScript would work. I assume there must be a Python version of that as well.
I can’t wait for the day I can use something like Kotlin to write Frontend code. Maybe there’ll be something like vue or react build on it
You could use Java ages ago and it was, very rightly so, abandoned.
You meanbJavaFX? Yeah the web version of it never was great
Just use javascript and don’t try to add {} to [].
Well, you never try to.
Rust would probably be the wrong tool here. This is scripting, so pointers like Rust is built around aren’t really meaningful. Kotlin or Python or something are more on the ticket.
Websites have grown beyond mere scripting.
Rust is about more than just nicer pointers, it has a very expressive type system that enables correctness rarely seen outside FP.
Parts of them, yeah. WASM in Rust makes total sense.
If you say so. I’d suggest Haskell, but it doesn’t work very naturally with interactivity, either user or intersystem.
You can use WebAssembly today, but you still need some JS interop for a bunch of browser features (like DOM manipulation). Your core logic can be in WebAssembly though. C# has Blazor, and I wouldn’t be surprised if there’s some Rust WebAssembly projects. I seem to recall that there’s a reimplementation of Flash player that’s built in Rust and compiles to WebAssembly.
Yeah, ideally TypeScript would be natively supported. Or maybe just Python, which is sort-of strictly typed, and definitely won’t do “wat”. Alas, it’s not the world we live in, and browsers take JavaScript.
Python supports type hints, but you need to use a type checker like Pyre or Pyright to actually check them. Python itself doesn’t do anything with the type hints.
Only if you use a badly written library. Most libraries have types provided by DefinitelyTyped. Those who don’t are (in my experience) so tiny that you probably aren’t using them; or, if you really wanted, can check yourself.
In the end, if you encounter a bug, it’ still 99% of the time not a library’s fault, even if it’s written in plain JS.
Like I said to the other person, those are just types over top of JavaScript that can still fail if/when coercion happens under the hood.
I don’t even know how to search it now, but a specific example came up on here of a time when JavaScript libraries will cause problems, and problems you can’t even see very well if you’re expecting it to act strictly-typed.